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Abstract: Many advance problems of biology, chemistry, physics and engineering can represent 

mathematically in the form of Volterra integral equations of first kind. In this paper, we used Kamal 

transform for solving linear Volterra integral equations of first kind and some applications are given 

in order to demonstrate the effectiveness of Kamal transform for solving linear Volterra integral 

equations of first kind. 
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1. INTRODUCTION 

The linear Volterra integral equation of first 

kind is given by [1-12]  

 ( )  ∫  (   ) ( )  
 

 
 …………… ( ) 

where the unknown function  ( ), that will be 

determined, occurs only inside the integral 

sign. The kernel  (   )and the function  ( ) 

are given real-valued functions.  

The Kamal transform of the function  ( ) is 

defined as [16]: 

 * ( )+  ∫  ( ) 
  
   

 

 

 

  ( )             

where   is Kamal transform operator. 

The Kamal transform of the function   ( ) 

for     exist if  ( ) is piecewise continuous 

and of exponential order. These conditions are 

only sufficient conditions for the existence of 

Kamal transform of the function  ( ).  

Abdelilah and Hassan [17] applied Kamal 

transform for solving partial differential 

equations. Fadhil [18] discussed the 

convolution for Kamal and Mahgoub 

transforms. Taha et. al. [19] defined the 

dualities between Kamal & Mahgoub integral 

transforms and some famous integral 

transforms. Aggarwal et al. [20] discussed a 

new application of Kamal transform for 

solving linear Volterra integral equations. 

Gupta et al. [21] gave the solution of linear 

partial integro-differential equations using 

Kamal transform. Aggarwal [22] defined 

Kamal transform of Bessel’s functions. 

Numerical solution for Volterra integral 

equations of the first kind via Quadrature rule 

was given by Mirzaee [23]. Maleknejad et al. 

[24] gave the numerical solution of Volterra 

integral equations of first kind by using a 

recursive scheme. Babolian and Masouri [25] 

applied direct method to solve Volterra 

integral equation of first kind using 

operational matrix with block-pulse functions. 

The aim of this work is to establish exact 

solutions for linear Volterra integral equation 
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of first kind using Kamal transform without 

large computational work. 

2. Linearity property of Kamal 

transforms [22]:  

If  * ( )+   ( )  and  * ( )+   ( ) 

then   *  ( )    ( )+    * ( )+  

  * ( )+ 

  *  ( )    ( )+    ( )    ( )  

where     are arbitrary constants. 

3. Kamal transform of some elementary 

functions [20-22]: 

S.N.  ( )  * ( )+   ( ) 

1.     

2.      

3.         

4.               

5.          (   )     

6.      

    
 

7.          

      
 

8.        

      
 

9.           

      
 

10.         

      
 

4. Convolution of two functions [13-15]: 

Convolution of two functions  ( ) and  ( ) is 

denoted by  ( )   ( ) and it is defined by  

 ( )   ( )      ∫  ( ) (   )  
 

 

 ∫  (   ) ( )  
 

 

 

5. Convolution theorem for Kamal 

transforms [18, 20-22]: 

If  * ( )+   ( )  and  * ( )+   ( )  then 

 * ( )   ( )+   * ( )+ * ( )+  

 ( ) ( ) 

6. Inverse Kamal transform [20-22]: 

If  * ( )+   ( ) then  ( ) is called the 

inverse Kamal transform of  ( ) and 

mathematically it is defined as   

 ( )     * ( )+ 

where     is the inverse Kamal transform 

operator. 

7. Inverse Kamal transform of some 

elementary functions [20-22]: 

S.N.  ( )  ( )     * ( )+ 

1.     

2.      

3.      

  
 

4.            

  
 

5.             

 (   )
 

6.  

    
     

7.   
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8.  

      
       

9.   

      
 

      

 
 

10.  

      
        

8. Kamal transform of Bessel’s functions 

[22]: 

a) Kamal transform of Bessel’s 

function of zero order   ( ): 

 *  ( )+  
 

√(    )
 

b) Kamal transform of Bessel’s 

function of order one   ( ): 

 *  ( )+    
 

√(    )
 

9. Kamal transforms for linear Volterra 

integral equations of first kind: 

In this work we will assume that the kernel 

 (   )of (1) is a difference kernel that can be 

expressed by the difference(   ). The linear 

Volterra integral equation of first kind (1) can 

thus be expressed as  

 ( )  ∫  (   ) ( )  
 

 
 …………… ( ) 

Applying the Kamal transform to both sides 

of( ), we have 

 * ( )+   *∫  (   ) ( )  +
 

 
…  ( ) 

Using convolution theorem of Kamal 

transform, we have  

 * ( )+   * ( )+ * ( )+ 

  * ( )+  [
 * ( )+

 * ( )+
]    ( ) 

Operating inverse Kamal transform on both 

sides of( ), we have  

 ( )     {[
 * ( )+

 * ( )+
]}……….. ( ) 

which is the required solution of (2). 

10. Applications: 

In this section, some applications are given in 

order to demonstrate the effectiveness of 

Kamal transform for solving linear Volterra 

integral equations of first kind. 

A. Application:1 Consider linear Volterra 

integral equation of first kind  

  ∫  (   )
 

 
 ( )  ………… ( ) 

Applying the Kamal transform to both sides 

of( ), we have 

 * +   {∫  (   )
 

 
 ( )  }…………. ( ) 

Using convolution theorem of Kamal 

transform on ( ), we have  

    *  + * ( )+ 

     [
 

   
]  * ( )+ 

            

   * ( )+              ( ) 

Operating inverse Kamal transform on both 

sides of( ), we have  

 ( )     {    }     * +     {    } 

   ( )           ( ) 

which is the required exact solution of ( ). 

B. Application:2 Consider linear Volterra 

integral equation of first kind  

     ∫  (   ) ( )
 

 
  …… (  ) 

Applying the Kamal transform to both sides 

of(  ), we have 
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 *    +   {∫  (   ) ( )
 

 
  }…………. 

(  ) 

Using convolution theorem of Kamal 

transform on(  ), we have  

  

    
  *  + * ( )+ 

  
  

    
 [

 

   
]  * ( )+ 

   * ( )+  
 (   )

    
 

 

    
 

  

    
    (  ) 

Operating inverse Kamal transform on both 

sides of(  ), we have  

 ( )     {
 

    
}     {

  

    
} 

   ( )                 (  ) 

which is the required exact solution of (  ). 

C. Application:3 Consider linear Volterra 

integral equation of first kind  

     ∫   (   ) ( )
 

 
  …… (  ) 

Applying the Kamal transform to both sides 

of(  ), we have 

 *    +   {∫   (   ) ( )
 

 
  }…. (  ) 

Using convolution theorem of Kamal 

transform on(  ), we have  

  

    
  *  ( )+ * ( )+ 

  
  

    
 [

 

√(    )
] * ( )+ 

   * ( )+  
 

√(    )
      (  ) 

Operating inverse Kamal transform on both 

sides of(  ), we have  

 ( )     {
 

√(    )
}   

  ( ) …………(  ) 

which is the required exact solution of (  ). 

D. Application:4 Consider linear Volterra 

integral equation of first kind  

   
 

 
∫ (   ) ( )
 

 
  …… (  ) 

Applying the Kamal transform to both sides 

of(  ), we have 

 *  +  
 

 
 {∫ (   ) ( )

 

 
  }…. (  ) 

Using convolution theorem of Kamal 

transform on(  ), we have  

     
 

 
  * + * ( )+ 

       
 

 
 [  ] * ( )+ 

   * ( )+          (  ) 

Operating inverse Kamal transform on both 

sides of(  ), we have  

 ( )      * +   ………… (  ) 

which is the required exact solution of (  ). 

E. Application:5 Consider linear Volterra 

integral equation of first kind 

  ∫   (   )
 

 
 ( )  ……(  ) 

Applying the Kamal transform to both sides of 

(  ), we have 

 * +   {∫   (   )
 

 
 ( )  }…. (  ) 

Using convolution theorem of Kamal 

transform on(  ), we have  

    *   + * ( )+ 

     [
 

   
]  * ( )+ 
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   * ( )+      …………. (  ) 

Operating inverse Kamal transform on both 

sides of(  ), we have  

 ( )     {    }     {  }     *   + 

   ( )     …………… (  ) 

which is the required exact solution of (  ). 

F. Application:6 Consider linear Volterra 

integral equation of first kind  

     ∫  (   )
 

 
 ( )  ……(  ) 

Applying the Kamal transform to both sides of 

(  ), we have 

 *    +   {∫  (   )
 

 
 ( )  }…. (  ) 

Using convolution theorem of Kamal 

transform on(  ), we have  

  

    
  * ( )+ * ( )+ 

 , * ( )+-  
  

    
 

   * ( )+   
 

√    
…………. (  ) 

Operating inverse Kamal transform on both 

sides of(  ), we have  

 ( )      {
 

√    
} 

   ( )     ( )………… (  ) 

which is the required exact solution of (  ). 

G. Application:7 Consider linear Volterra 

integral equation of first kind  

  ∫  ( )
 

 
  ……(  ) 

Applying the Kamal transform to both sides of 

(  ), we have 

 * +   {∫  ( )
 

 
  }…. (  ) 

Using convolution theorem of Kamal 

transform on(  ), we have  

    * + * ( )+ 

       * ( )+ 

  * ( )+   …………. (  ) 

Operating inverse Kamal transform on both 

sides of(  ), we have  

 ( )     * +   ………… (  ) 

which is the required exact solution of (  ). 

H. Application:8 Consider linear Volterra 

integral equation of first kind  

    ( )  ∫  ( )
 

 
  ……(  ) 

Applying the Kamal transform to both sides of 

(  ), we have 

 * +   *  ( )+   {∫  ( )
 

 
  }…. (  ) 

Using convolution theorem of Kamal 

transform on(  ), we have  

  
 

√    
  * + * ( )+ 

    
 

√    
    * ( )+ 

   * ( )+    
 

√(    )
…………. (  ) 

Operating inverse Kamal transform on both 

sides of(  ), we have  

 ( )     {  
 

√(    )
}    ( )……(  ) 

which is the required exact solution of (  ). 

I. Application:9 Consider linear Volterra 

integral equation of first kind  

  ( )       

∫   (   ) ( )
 

 
  …(  ) 
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Applying the Kamal transform to both sides of 

(  ), we have 

 *  ( )+   *    +   {∫   (  
 

 

 ) ( )   }  (39) 

Using convolution theorem of Kamal 

transform on(  ), we have  

 

√    
 

 

    
  *  ( )+ * ( )+ 

  
 

√    
 

 

    
 

 

√(    )
  * ( )+ 

   * ( )+    
 

√(    )
…………. (  ) 

Operating inverse Kamal transform on both 

sides of(  ), we have  

 ( )     {  
 

√(    )
}    ( )……(  ) 

which is the required exact solution of (  ). 

J. Application:10 Consider linear Volterra 

integral equation of first kind  

       ( )  

 ∫   (   ) ( )
 

 
  …..(  ) 

Applying the Kamal transform to both sides of 

(  ), we have 

 *    +   *  ( )+     ∫   (  
 

 

 ) ( )    

                                                         (  ) 

Using convolution theorem of Kamal 

transform on(  ), we have  

 

    
 

 

√(    )
   {  ( )} * ( )+ 

  
 

    
 

 

√(    )
 

 [  
 

√(    )
]   * ( )+ 

   * ( )+  
 

√(    )
…………. (  ) 

Operating inverse Kamal transform on both 

sides of(  ), we have  

 ( )     {
 

√(    )
}    ( )………… 

(  ) 

which is the required exact solution of (  ). 

11. CONCLUSION 

In this paper, we have successfully developed 

the Kamal transform for solving linear 

Volterra integral equations of first kind. The 

given applications showed that the exact 

solution have been obtained using very less 

computational work and spending a very little 

time. The proposed scheme can be applied for 

other linear Volterra integral equations and 

their system. 
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